Restricted gene flow between resident Oncorhynchus mykiss and an admixed population of anadromous steelhead
نویسندگان
چکیده
The species Oncorhynchus mykiss is characterized by a complex life history that presents a significant challenge for population monitoring and conservation management. Many factors contribute to genetic variation in O. mykiss populations, including sympatry among migratory phenotypes, habitat heterogeneity, hatchery introgression, and immigration (stray) rates. The relative influences of these and other factors are contingent on characteristics of the local environment. The Rock Creek subbasin in the middle Columbia River has no history of hatchery supplementation and no dams or artificial barriers. Limited intervention and minimal management have led to a dearth of information regarding the genetic distinctiveness of the extant O. mykiss population in Rock Creek and its tributaries. We used 192 SNP markers and collections sampled over a 5-year period to evaluate the temporal and spatial genetic structures of O. mykiss between upper and lower watersheds of the Rock Creek subbasin. We investigated potential limits to gene flow within the lower watershed where the stream is fragmented by seasonally dry stretches of streambed, and between upper and lower watershed regions. We found minor genetic differentiation within the lower watershed occupied by anadromous steelhead (FST = 0.004), and evidence that immigrant influences were prevalent and ubiquitous. Populations in the upper watershed above partial natural barriers were highly distinct (FST = 0.093) and minimally impacted by apparent introgression. Genetic structure between watersheds paralleled differences in local demographics (e.g., variation in size), migratory restrictions, and habitat discontinuity. The evidence of restricted gene flow between putative remnant resident populations in the upper watershed and the admixed anadromous population in the lower watershed has implications for local steelhead productivity and regional conservation.
منابع مشابه
Gene Flow between Sympatric Life History Forms of Oncorhynchus mykiss Located above and below Migratory Barriers
Oncorhynchus mykiss have a diverse array of life history types, and understanding the relationship among types is important for management of the species. Patterns of gene flow between sympatric freshwater resident O. mykiss, commonly known as rainbow trout, and anadromous O. mykiss, commonly known as steelhead, populations are complex and poorly understood. In this study, we attempt to determi...
متن کاملWho are the missing parents? Grandparentage analysis identifies multiple sources of gene flow into a wild population.
In order to increase the size of declining salmonid populations, supplementation programmes intentionally release fish raised in hatcheries into the wild. Because hatchery-born fish often have lower fitness than wild-born fish, estimating rates of gene flow from hatcheries into wild populations is essential for predicting the fitness cost to wild populations. Steelhead trout (Oncorhynchus mykis...
متن کاملOver the falls? Rapid evolution of ecotypic differentiation in steelhead/rainbow trout (Oncorhynchus mykiss).
Adaptation to novel habitats and phenotypic plasticity can be counteracting forces in evolution, but both are key characteristics of the life history of steelhead/rainbow trout (Oncorhynchus mykiss). Anadromous steelhead reproduce in freshwater river systems and small coastal streams but grow and mature in the ocean. Resident rainbow trout, either sympatric with steelhead or isolated above barr...
متن کاملIdentification of Steelhead and Resident Rainbow Trout Progeny in the Deschutes River, Oregon, Revealed with Otolith Microchemistry
—Comparisons of strontium:calcium (Sr:Ca) ratios in otolith primordia and freshwater growth regions were used to identify the progeny of steelhead Oncorhynchus mykiss (anadromous rainbow trout) and resident rainbow trout in the Deschutes River, Oregon. We cultured progeny of known adult steelhead and resident rainbow trout to confirm the relationship between Sr:Ca ratios in otolith primordia an...
متن کاملRapid parallel evolution of standing variation in a single, complex, genomic region is associated with life history in steelhead/rainbow trout.
Rapid adaptation to novel environments may drive changes in genomic regions through natural selection. Such changes may be population-specific or, alternatively, may involve parallel evolution of the same genomic region in multiple populations, if that region contains genes or co-adapted gene complexes affecting the selected trait(s). Both quantitative and population genetic approaches have ide...
متن کامل